Skip to contents

Extract relevant correlation indices from lavaan model through lavaan::parameterEstimates with standardized = TRUE. In this case, the correlation coefficient (r) represents the resulting std.all column.

Usage

lavaan_cor(fit, nice_table = FALSE, ...)

Arguments

fit

lavaan fit object to extract correlations from

nice_table

Logical, whether to print the table as a rempsyc::nice_table as well as print the reference values at the bottom of the table.

...

Arguments to be passed to rempsyc::nice_table

Value

A dataframe of correlations, including the correlated variables, the correlation, and the corresponding p-value.

Examples

(latent <- list(visual = paste0("x", 1:3),
                textual = paste0("x", 4:6),
                speed = paste0("x", 7:9)))
#> $visual
#> [1] "x1" "x2" "x3"
#> 
#> $textual
#> [1] "x4" "x5" "x6"
#> 
#> $speed
#> [1] "x7" "x8" "x9"
#> 

(regression <- list(ageyr = c("visual", "textual", "speed"),
                    grade = c("visual", "textual", "speed")))
#> $ageyr
#> [1] "visual"  "textual" "speed"  
#> 
#> $grade
#> [1] "visual"  "textual" "speed"  
#> 

(covariance <- list(speed = "textual", ageyr = "grade"))
#> $speed
#> [1] "textual"
#> 
#> $ageyr
#> [1] "grade"
#> 

HS.model <- write_lavaan(regression = regression, covariance = covariance,
                         latent = latent, label = TRUE)
cat(HS.model)
#> ##################################################
#> # [-----Latent variables (measurement model)-----]
#> 
#> visual =~ x1 + x2 + x3
#> textual =~ x4 + x5 + x6
#> speed =~ x7 + x8 + x9
#> 
#> ##################################################
#> # [---------Regressions (Direct effects)---------]
#> 
#> ageyr ~ visual + textual + speed
#> grade ~ visual + textual + speed
#> 
#> ##################################################
#> # [------------------Covariances-----------------]
#> 
#> speed ~~ textual
#> ageyr ~~ grade
#> 

library(lavaan)
fit <- sem(HS.model, data=HolzingerSwineford1939)
lavaan_cor(fit)
#>    Variable.1 Variable.2     r     p
#> 16    textual      speed 0.268 0.001
#> 17      ageyr      grade 0.533 0.000
#> 32     visual    textual 0.458 0.000
#> 33     visual      speed 0.438 0.000