Extract relevant covariance/correlation indices from lavaan model
Source:R/lavaan_cov.R
lavaan_cov.Rd
Extract relevant covariance/correlation indices from lavaan lavaan::parameterEstimates and lavaan::standardizedsolution.
Arguments
- fit
lavaan fit object to extract covariance indices from
- nice_table
Logical, whether to print the table as a rempsyc::nice_table as well as print the reference values at the bottom of the table.
- ...
Arguments to be passed to rempsyc::nice_table
Value
A dataframe of covariances/correlation, including the covaried variables, the covariance/correlation, and corresponding p-value.
Examples
x <- paste0("x", 1:9)
(latent <- list(
visual = x[1:3],
textual = x[4:6],
speed = x[7:9]
))
#> $visual
#> [1] "x1" "x2" "x3"
#>
#> $textual
#> [1] "x4" "x5" "x6"
#>
#> $speed
#> [1] "x7" "x8" "x9"
#>
(regression <- list(
ageyr = c("visual", "textual", "speed"),
grade = c("visual", "textual", "speed")
))
#> $ageyr
#> [1] "visual" "textual" "speed"
#>
#> $grade
#> [1] "visual" "textual" "speed"
#>
(covariance <- list(speed = "textual", ageyr = "grade"))
#> $speed
#> [1] "textual"
#>
#> $ageyr
#> [1] "grade"
#>
HS.model <- write_lavaan(
regression = regression, covariance = covariance,
latent = latent, label = TRUE
)
cat(HS.model)
#> ##################################################
#> # [-----Latent variables (measurement model)-----]
#>
#> visual =~ x1 + x2 + x3
#> textual =~ x4 + x5 + x6
#> speed =~ x7 + x8 + x9
#>
#> ##################################################
#> # [---------Regressions (Direct effects)---------]
#>
#> ageyr ~ visual + textual + speed
#> grade ~ visual + textual + speed
#>
#> ##################################################
#> # [------------------Covariances-----------------]
#>
#> speed ~~ textual
#> ageyr ~~ grade
#>
library(lavaan)
fit <- sem(HS.model, data = HolzingerSwineford1939)
lavaan_cov(fit)
#> Variable 1 Variable 2 SE Z p sigma CI_lower
#> 16 textual speed 0.05102682 3.411223 6.467214e-04 0.1740639 0.07405313
#> 17 ageyr grade 0.03077116 7.488490 6.972201e-14 0.2304295 0.17011916
#> 32 visual textual 0.07430296 5.572306 2.513899e-08 0.4140388 0.26840769
#> 33 visual speed 0.05710260 4.545270 5.486495e-06 0.2595467 0.14762767
#> CI_upper r CI_lower_r CI_upper_r
#> 16 0.2740746 0.2679391 0.1331814 0.4026968
#> 17 0.2907399 0.5332236 0.4471455 0.6193016
#> 32 0.5596700 0.4583362 0.3334309 0.5832415
#> 33 0.3714657 0.4384508 0.2944977 0.5824039